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Isotropic-nematic transition in liquid-crystalline elastomers:
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When liquid-crystalline elastomers pass through the isotropic-nematic transition, the orientational order
parameter and the elastic strain vary rapidly but smoothly, without the expected first-order discontinuity. This
broadening of the phase transition is an important issue for applications of liquid-crystalline elastomers as
actuators or artificial muscles. To understand this behavior, we develop a lattice model of liquid-crystalline
elastomers, with local directors coupled to a global strain variable. In this model, we can consider either
random-bond disordgrepresenting chemical heterogengity random-field disordefrepresenting heteroge-
neous local stresspdMonte Carlo simulations show that both types of disorder cause the first-order isotropic-
nematic transition to broaden into a smooth crossover, consistent with the experiments. For random-field
disorder, the smooth crossover into an ordered state can be attributed to the long-range elastic interaction.
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I. INTRODUCTION some aligning stress shifts the transition past a mechanical
critical point [12], like a liquid-gas transition at high pres-

Liquid-crystalline elastomers are complex materials consure. This aligning stress might arise from an applied tensile
sisting of cross-linked polymer networks covalently bondedstress on the sample or from an anisotropic internal stress
to long, rigid, liquid-crystalline unit§1-3]. Because of this due to cross-linking an elastomer in the nematic phase. The
unusual structure, they combine the elastic properties of rutsecond possibility is that the transition is broadened by
bers with the anisotropy of liquid crystals. Any distortion of heterogeneity in the elastomer. In particular, we considered
the polymer network affects the orientational order of theheterogeneity in the local isotropic-nematic transition
liquid crystal, and, likewise, any change in the magnitude otemperature.
direction of the orientational order influences the shape of To assess these two possible explanations, we measured
the elastomer. These materials have a low-temperature nerfe elastomer strain as a function of temperature over a range
atic phase, with long-range orientational order in the liquid-of applied tensile stress. We used elastomer samples cross-
crystalline units, and a high-temperature isotropic phasdinked in the nematic phase, which should have a large an-
with no long-range orientational order. Near the isotropic-isotropic internal stress imprinted by the cross-linking pro-
nematic transition, a small change in temperature induces eess, and samples cross-linked in the isotropic phase, which
large change in the orientational order, which causes the elashould not have an anisotropic internal stress. By analyzing
tomer to extend or contract substantially. This thermally in-the experimental data, we found three indications that the
duced extension and contraction enables liquid-crystallindéroadening of the phase transition is caused by heterogene-
elastomers to be used as actuators or artificial mu$éte§. ity. First, the slope of strain versus temperature at the transi-

A key issue for basic and applied research on liquid-tion does not depend sensitively on the applied stress, in
crystalline elastomers is understanding the isotropic-nematicontrast with the prediction for homogeneous elastomers.
transition. In conventional liquid crystals of small molecules, Second, the broadening occurs even for samples cross-linked
this is a first-order transition, with a discontinuity in the mag-in the isotropic phase. Third, the data for strain versus tem-
nitude of the orientational order as a function of temperatureperature could not be fit well by the predictions of Landau
By contrast, experiments on liquid-crystalline elastomergheory for homogeneous elastomers, but could be fit much
show that both the orientational order and parameter and theetter by the homogeneous theory convolved with a hetero-
elastic strain vary rapidly but smoothly across this transitiongeneous distribution of transition temperatures.
with no first-order discontinuity4—10. Apparently the ex- Although our previous study showed the importance of
perimental behavior is neither a first- nor a second-ordeheterogeneity for the isotropic-nematic transition in liquid-
transition, but rather a nonsingular crossover between therystalline elastomers, this study still leaves two open ques-
isotropic and nematic phases. Although the transition is sharpons. The first issue is the distribution of local strains. The
enough for applications, it is puzzling from the theoretical previous theory considered an average over local regions
point of view. We would like to explain the broadening of with different transition temperatures. At any given tempera-
this phase transition in liquid-crystalline elastomers, com-ure, these regions have different local nematic order param-
pared with the analogous transition in conventional liquideters and different local strains. It is not clear how regions
crystals. with different local strains can fit together. The second issue

In a previous papefll], we considered two possible ex- is the type of heterogeneity. The previous theory considered
planations for this broadening. The first possibility is thata distribution of the local transition temperature, which could

1539-3755/2004/7@)/0417078)/$22.50 70 041707-1



J. V. SELINGER AND B. R. RATNA PHYSICAL REVIEW E70, 041707(2004

Isotropic phase Nematic phase and the strain. This result is consistent with experimental
data for liquid-crystalline elastomers. Fourth, we simulate an

MIEdRIR) AR elastomer with random-field disorder and find that the tran-
s T2y NMIEEIES sition is also broadened in this case, consistent with experi-
I ments, provided that the random field strength is in the right

@5\ T |= range. The result for the random-field system is surprising,

o . . because random fields generally destroy long-range order
FIG. 1. Schematic illustration of the lattice model for the (ather than broadening a transition to an ordered state. We

isotropic-nematic transition in liquid-crystalline elastomers. In theattribute this result to an effective long-range interaction me-
isotropic phase, the directors are disordered, and there is no Straiaiated by the elastic strain

In the nematic phase, the directors are ordered along one axis, and

o ) : . The plan of this paper is as follows. In Sec. Il we work
the material is extended with strain along that axis.

out the theoretical formalism, leading to an explicit lattice

arise from chemical heterogeneity in an elastomer. This typ‘le-!amllto.nlan that can be simulated. In Sec. Il we present the
of heterogeneity would be regarded theoreticallyaslom- ~ Simulations for homogeneous, random-bond, and random-
bonddisorder. It is not the only possible type of heterogene—f'eld el_astome_r_s an_d give numerical results for th_e isotropic-
ity. Another possibility is a distribution of local stresses, Nematic transition in each case. In Sec. IV we discuss these
which could arise from local orientational order in different Numerical results and compare them with experiments and
directions at the time of cross-linking. This possibility would With other theoretical studies of quenched disorder.
be regarded theoretically aandom-fielddisorder. Several
recent papers have considered random-field disorder in
liquid-crystalline elastomerg§13-18. These studies have
shown that random fields strongly affect mechanical proper- In order to simulate the isotropic-nematic transition in
ties and correlation functions in the low-temperature nematidiquid-crystalline elastomers, we need a mathematical model
phase. However, they have not made predictions for the efor the interacting orientational and elastic degrees of free-
fects of random-bond or random-field disorder on thedom. In this model, we define a local nematic direatpon
temperature-dependent isotropic-nematic transition. each sita of a 3D cubic lattice. As in a conventional liquid
The purpose of this paper is to develop a lattice model fokcrystal, the directom; is equivalent to ;. The directors
liquid-crystalline elastomers, which addresses these theoreiiateract with a global lattice distortion tenskr which rep-
ical questions about the isotropic-nematic transition. In thigesents the overall shape of the sample. A schematic view of
model, we explicitly consider both orientational order andthe directors and lattice distortion is shown in Fig. 1.
elastic strain, as shown in Fig. 1. Orientational order is de- The Hamiltonian for this lattice model can be written as
scribed by a nematic director, which is defined on each site
of a three-dimension#BD) lattice, as in the Lebwohl-Lasher F=2> Finteractiof NisNj) + > Fetastid i, N). 1)
model of liquid crystal§19]. By contrast, elastic strain is i i
defined by a single global lattice distortion variable. Becausgrhe first term in Eq(1) is an interaction that favors align-
the strain is assumed to be uniform, there is no problem ofyent of the directors on neighboring lattice siteandj. As

fitting together regions with different strains. In this model, i, the Lebwohl-Lasher model, this interaction can be written
we can consider either random-bond or random-field disoréxplicitly as

der. Random-bond disorder enters the model as a variation in

the strength of the local coupling constant between local di- Finteractio i Nj) = = J;j (N; -nj)z, (2)
rectors on nelghpqung lattice sites, which |mpl|.es a Var'atlonwhereJi- =0 is the local bond strength, which may be either
in the local transition temperature. By comparison, random- ]

field disorder enters the model as a variation in the directior%!nlform or disordered. The second term in Ef}.is an elas-

of an aligning field that acts on each local director, WhiChtIC term that couples the director orientation at lattice site

implies a local stress on the elastomer. Both types of disorde\é}/Ith the shape of the polymer chains, which are determined

arequenchedmeaning that they are fixed and cannot evolve y the overall lattice distortion tensar. This term should
q S 9 y favor alignment of the directors along an orientation deter-
toward equilibrium.

Our study leads to four main results. First, we derive ammed by the lattice distortion and, conversely, favor a lattice

4 . o . distortion in an orientation determined by the directors.
new theoretical formalism for liquid-crystalline elastomers,

; . . To develop an explicit expression for this elastic term, we
which translates the Warner-Terentjev neoclassical rubber : L
. ; ) L . ) . use an argument based on the neoclassical rubber elasticity
elasticity[1-3] into a lattice Hamiltonian for interacting di-

rectors and strain. Second, we use Monte Carlo simulationgevéir::rraﬂ]oo:nrﬁlraemjem_s]' In their theory, they derive

to determine the orientational order parameter and elastic
strain of a homogeneous elastomer as a function of tempera- m . det¢

ture and applied stress. These simulations show that the ho- Felastic= 5 Tr(€g-N"-€-N) +1In = /| 3

mogeneous elastomer has a mechanical critical point, as ex-

pected from Landau theory. Third, we simulate an elastomewhere n is the shear modulusy is the lattice distortion
with random-bond disorder and find a broadening of thetensor,€ is the shape tensor of the polymer chaifsis the
isotropic-nematic transition in both the orientational ordershape tensor at the time of cross-linking, and the average

Il. MODEL
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polymer step length. They further work out a specific expres-  F__.idn;,\)
sion for the shape tensor in the freely jointed chain model.

That specific expression is not appropriate for a lattice _ M 2+ 2070 = y(A2 - )\‘1)<§(m n)2- })]
Hamiltonian, because it is based omlabal average over a 2 2 Y2
system withimperfectnematic order. By contrast, in a lattice (9)

model, there is a director on each lattice site, which repre-
sentsperfect localorientational order along; at sitei. Any

imperfect long-range order must emerge spontaneously from, i eynression, the first term is the classical elastic free

simulations of the interacting syste.m..Henc.e, we should Conénergy for conventional isotropic elastomers and the second
struct a local shape tensdr for site i, derived from the

) . ; : term represents the anisotropy of liquid-crystalline elas-
directorn;, which will enter into the trace formula of E(B). P Py d y

T fruct the local sh ; first » tomers. As expected, the second term shows a coupling be-
0 construct the local shape ensﬁp,r\_/ve IFStconsiter a  yyeen the elastic strain and the director orientation. When the
coordinate system aligned along the direatgrin which ¢;

is di L In that dinat ; h lattice is strained, each local directoytends to align along
IS diagonal. [n that coordinate system, we have the strain axisn, with an aligning potential that increases as
the distortion\ increases above 1. Conversely, when the di-

-1
€70 0 rectors are aligned, the lattice tends to extend along the av-
¢r={ o ¢ o0 |, (4)  erage director. The strength of the coupling depends on the
o o ¢ parameter

where ¢, and ¢, are the anisotropic polymer step lengths _1 1
favored by the local mesogenic unit. In a general coordinate _ 2072, (10)
system, the shape tensor components become Y 207+ ¢

egiﬁ =0 8,5+ (67 = €N o0 . (5)

A similar argument gives an explicit expression for the
lattice distortion tensolk. Suppose the lattice is uniformly
strained along the axim. In a coordinate system aligned
with this strain axis, we have

which represents the difference in polymer step lengths par-
allel and perpendicular to the local director. This parameter
expresses the anisotropy of the local mesogenic units and
controls how the local director interacts with the strain. It
ranges from O(in the isotropic case/;=¢,) to 1 (in the
maximally anisotropic limitf,;>¢ ).

-1/2
A _01/2 0 We must now consider the possibility of symmetry-
A=l 0 A 0, (6) breaking fields acting on the elastomer. Symmetry-breaking
0 0 fields can arise from two possible sources. The simplest pos-

sibility is a uniform stresgr applied to the elastomer. Such a

where is the distortion factor—i.e. the strained length nor- Stress couples to the stragror, equivalently, to the distortion
malized by the original length of the sample, which is related» =1+e and gives an additional contribution to the Hamil-
to the straire by A\=1+e. In a general coordinate system, the tonian of o\ for each lattice site. A more subtle possibility

distortion tensor components become is a symmetry-breaking field quenched into the local shape
tensor(, at the time of cross-linking. If the system has long-
Nap= }\_1/25a,8 +(\ - )x"”z)mamﬁ. 7 range order at the time of cross-linking, thénis anisotropic

with a single principal axis, at all lattice sites. If the system
The third tensor required for neoclassical rubber elasticithas short-range order at the time of cross-linking, thgis
is the shape tensdf, at the time of cross-linking. For now, anisotropic with a different principal axis, at each lattice
suppose the system is cross-linked in a totally disorderedjtei.
state, with no long-range or even local orientational order. In  |n principle, we can incorporate the long- or short-range
that case, a reasonable model fgi‘ is the isotropic average anisotropy of€}) into the model by writing a general expres-

of €1, This average gives the tensor components sion for this tensor and substituting it into the trace formula
of Eq. (3). The detailed calculation is not algebraically trac-
56,151,3:3_1551/3, (8) table, but by symmetry we can see that the tensor compo-
nents¢ ,, Must involve a combination of the isotropic ten-
wherea™=(2¢'+¢7%)/3. sor 3,5 and the anisotropic tensow, n; , at sitei. The

To determine the elastic term in the lattice Hamiltonian,anisotropic term acts as an effective field on the direntpr
we substitute the tensor expressighy (7), and(8) into the  with a coupling of the form ¢h;-n;)% The direction ofh; is
general formula of Eg3). In this substitution, we note that the local quenched-in axig, and the magnitude df; scales
det€ is constant because represents perfect local orienta- with the magnitude of the local quenched-in nematic order.
tional order at a specific lattice site. Hence, the determinant By combining Eg. (2), Eq. (9), and the effects of
term adds an unimportant constant to the Hamiltonian, andymmetry-breaking fields, we obtain the final expression for
we can neglect it. After some algebra, the trace term leads tthe lattice Hamiltonian:
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B 5 T . over lattice sited. That parameter represents the degree of
F=- E Jij(my - ny)=+ E EO\ +2\7) ordering of the local directors along an average axis.

@ : We begin with the local directors in a disordered configu-
ration and then cycle the temperature downward and back
upward, using the ending configuration at one temperature as

the starting point for the next. This temperature cycling mim-

ics the procedure in typical experiments and provides an ex-
plicit test for hysteresis. For most parameter sets, we vary the
) o - ) ) temperature from 0.9 to 0.8 and back in steps of 0.05, for a
In this Hamiltonian, the statistical variables are the directokqia| of 41 runs over the temperature range. Each temperature
n; on each lattice siteand the overall lattice distortiox. We cycle requires approximately 48 h on a single processor of

can assume that the distortion axts is aligned with the  yhe Hyinalu linux supercluster at the Maui High Performance
principal axis of the director distribution. Computing Center.

This modell of Eq(11) can describe uniform elastom_ers O Because the temperature cycle gives two runs at each
elastome_rs with quenched random-bond or random-field d'st'emperature{except the lowest we can assess whether each
order. Uniform elastomers are represented by a bond strengf{j, shows a stable, metastable, or unstable state. To test for
Jj=J independent of position and by a local figig=0. I nsiaple states, we check whether the order pararSdias
this case, the system can have an isotropic-nematic transitiQf}apjlized by fitting it as a linear function of the Monte Carlo
with a transition temperaturBy that depends od. Random- gt number over the final 2000 steps at each temperature.
bond elastomers are represented by a bond strelgthat e identify a state as unstable and remove it from our results
depends on the position of the lattice siteandj. We can it the apsolute value of the slope exceeds a threshold. In
regard this variation in the bond strength as a variation in th‘f’)ractice, we find that the threshold of X2.0°5 eliminates at
local Ty, which could be caused by chemical heterogeneity,ost two runs from each temperature cycle, one on cooling
in the elastomer. Random-field elastomers are represented B} one on heating. To test for stability versus metastability,
a local fieldh; that varies randomly with position. This varia- |y compare the values & for cooling and heating runs at
tion models randomness in the local orientational order at thg,o same temperature. If these values are within six standard
time of crosslinking, which gives heterogeneous localyeyiations of each other, we assume they represent the same
stresses on the elastomer. We can now perform simulationg,pe state, so we average the two runs to obtain one data
to study the isotropic-nematic transition in each scenariopgint with improved statistics. If not, we assume that one
These simulations are presented in the following section.  giate js stable and the other metastable, so we report both in

our results.

MY o 3, o1
2()\ A )(2(”1 n;) >

_U)\_(hi 'ni)2:|. (11)

IIl. SIMULATIONS

We simulate the model of E@11) using the Monte Carlo A. Uniform elastomers

method. We run the simulations on a 3D cubic lattice with  For an initial series of simulations, we consider uniform
periodic boundary conditions. We use a 3D rather than a 2@lastomers, with no randomness in the bo¢alsJ;;=1) and
lattice, even though the simulations take longer in 3D, inno random fieldgall h;=0). The numerical results for these
order to avoid a 2D Kosterlitz-Thouless transitif20]. We  simulations are shown in Fig. 2. For zero applied stress
normally use a lattice of size 3636x 36. However, we the system has a first-order transition with hysteresis be-
have run a limited number of simulations on a larger latticetween the high-temperature isotropic phase and the low-
of size 48x48x 48, for the uniform, random-bond, and temperature nematic phase. On cooling, the orientational or-
random-field cases, and the results are generally consistemter parameteS(T) jumps from 0.05 to 0.62 and the lattice
In the simulations, we take the uniform or average value oflistortion\(T) jumps from 1.01 to 1.221%-22% straip at
the bond strengtli; to be 1 and the shear modulugo be 1.  a scaled temperature of 0.81. On heatiS(f) jumps from
These parameters define a scale for the temperature. We @47 to 0.02 and\(T) jumps from 1.13 to 1.0G13%—-0%
the anisotropy parameterhave its maximum value of 1, in  strain), at a scaled temperature of 0.85. The large jumps in
order to see the greatest coupling between orientational ordeth of these order parameters and the width of the hysteresis
and elastic distortion. region show the strong first-order character of the transition.
In each Monte Carlo step of the simulations, we attempt When a symmetry-breaking stress is applied to the uni-
one local director rotation per lattice site and one change iflorm elastomer, the phase transition changes drastically. An
the overall elastic distortior\. At each temperature, we applied stress increases both order param&@psand\(T)
equilibrate for 3000 Monte Carlo steps and then collect datgor all temperatures. As the stress becomes larger, the transi-
for 2000 Monte Carlo steps. This number of steps is suffition temperature increases, the first-order jumps in the order
cient to reach equilibrium at all temperatures except for cerparameters decrease, and the hysteresis region becomes nar-
tain cases of hysteresis, which are discussed below. From thgwer. At a critical value of the stress between 0.06 and 0.08,
numerical data, we extract two parameters as functions ahe first-order jumps vanish and the hysteresis goes away.
temperatureT: the elastic distortion\(T) and the orienta- Beyond that stress, the system shows a smooth supercritical
tional order paramete®(T), which is defined as the largest evolution between the high-temperature disordered limit and
eigenvalue of the tenso@alg:@ni,aniﬁ—%5aﬁ>, averaged the low-temperature ordered limit. As the stress continues to
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FIG. 3. Schematic view of the block structure in the simulations
with quenched disordea) Random bond strengthitb) Random
field orientations.

parameters);; of Eq. (11) be quenched random variables,
which are fixed at the beginning of the simulation and do not
change in response to the statistical evolution of the directors
and the lattice distortion. We suppose that the variatiod; of
occurs in blocks, as shown in Fig(e3. Within each block,
Jij has a uniform value from a Gaussian distribution with
mean 1. From block to block, there are no correlationg;in
Both the width of the Gaussian distribution and the size of
the blocks are parameters for the model, which are discussed
below. Because the isotropic-nematic transition temperature
depends on the bond strength, this model represents an elas-
. ; : tomer with blocks of different local transition temperature
g bis %0 0iEs L T,n. This could occur if the elastomer is chemically hetero-
Temperature geneous, with different compositions in different local
regions.

In Fig. 4a), we show the results for varying the magni-
tude of the disorder—i.e. the standard deviation of the
Gaussian distribution ofl;—for the fixed block size 12

FIG. 2. (Color online Plots of the orientational order parameter
S(T) and the elastic distortion(T) for a homogeneous elastomer
under several values of the applied uniform str@sAt zero stress,
both plots show a first-order isotropic-nematic transition with a
large hysteresis. As the stress increases, the first-order discontinuity

. 0.7 4 —o— No disorde
decreases and then vanishes as the system passes through a fa) EERY-Yusta
mechanical critical point. Temperature is in units of the bond 06 3 il
strengthJ. 05 A —A— $20%

e 0.4 1
increase, this supercritical evolution becomes increasingly &

. . . . . . . 0.3 1
broad. This trend with increasing stress is consistent with the

prediction of de Gennes based on symmetry considerations
[12]. It is analogous to the critical point in the liquid-gas 0.1 ,
transition under high pressure. 0.0 R e e e e
The simulations show that the orientational order param-
eter ST) and the elastic straie(T)=\(T)—-1 have roughly
the same dependence on both temperature and applied stress.
The linear scaling betwee®(T) ande(T) is consistent with 0.5 1
the prediction based on symmetry considerations. 041
We note that the smooth evolution 8T) and &(T) be- %
yond the mechanical critical point agrees with experiments
on the isotropic-nematic transition in liquid-crystalline elas-
tomers. However, as discussed in the Introduction, our pre- 0.1
vious paper found experimental indications that the 0.0 1
isotropic-nematic transition is smooth even if an elastomer is
notunder a supercritical streg¥1]. For that reason, we need
to look for other mechanisms to broaden this transition.
Hence, we consider random-bond and random-field disorder FIG. 4. (Color onling Orientational order paramet&XT) for
in the following sections. simulations of elastomers with random-bond disorday.Varying
magnitude of disorder, with fixed block size ¥22x 12. (b) Vary-
ing block size of disorder, with fixed magnitude #80As the dis-
order magnitude and block size increase, the transition is broadened
To simulate disordered systems, we first consider elasinto a smooth crossover between the isotropic and nematic limits.
tomers with variations in the local bond strength. We let theTemperature is in units of the average bond stredgth

0.2 1

0.7 1 (b) —e— No disorder

—v— Blocksize 1 x1x1
Block size 3x 3 x3

—o— Blocksize 6 x 6 x6

—a— Block size 12x 12x 12

06 g g T

0.3 1

0.2 1

- e eeeg

0.80 0.82 0.84 0.86 0.88 0.90
Temperature

B. Random bonds
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X 12X 12. To save space, we show only the plots of the 071 (a) —e— No disorder

orientational order paramet&T), because the correspond- . —v- :jgg
ing plots of the lattice distortion(T) look quite similar. For 081 O

weak disorder of +%, the system has a strong first-order 05 - —#—h=0:3
isotropic-nematic transition, which is almost identical to the
result for no disorder. Clearly the orientational order can av-
erage over this weak disorder strength. For a larger disorder 03 1
of £10%, there is still a first-order transition, but the first-
order discontinuity inS(T) is smaller, and the width of the
hysteresis region is greatly reduced. When the disorder & ] \‘
reaches +1%, there is no longer a first-order discontinuity 0.0 1 === e—w-=0-0-03
nor a hysteresis loop. Instead, the material evolves rapidly
but smoothly between the isotropic and nematic limits as a ,
function of temperature. For an even larger disorder of 06 1

+20%, the transition becomes even broader, with a reduced

0.4

Sl

0.2 4

0.7 1 (b) —e— No disorder

—v— Block size 1 x1x1
Block size 3 x3x 3

—&— Block size 6 x6 x 6

. 054 | —4— Block size 12x 12x 12
sIope inS(T). _ . ol | .
Figure 4b) presents the results of varying the block size g ‘\
for a fixed disorder magnitude of +2@ For the large block ® 03 |
size 12X 12X 12 discussed above, or even for block size 6 02 1 \1
\

X 6X 6, the random-bond disorder causes a smooth evolu-
tion between the isotropic and nematic states. However, for a 011 |
reduced block size of 83X%3, there is a first-order '

0.0 A 4
isotropic-nematic transition, with a small first-order discon- . : . :
tinuity and small hysteresis. If the block size is reduced to 0.80 0.82 0.84 0.86 0.88 0.90
1X1X1—i.e., each block is a single lattice site—then the Temperature
system has a strong first-order transition. Although the disor- . . )
der strength is quite large, the result for block size 1L FIG. 5. (Color online Orientational order paramet&T) for

. . . . simulations of elastomers with random-field disordey. Varying
X1 is almost identical to the result for no disorder. Hence,maIgnitude of random field, with fixed block size %22 12. (b)

reducing the block size is effectively equivalent to reducingVarying block size, with fixed random-field strendikr0.4. As the

the magnitude of disorder. The orientational order can avVelrandom-field strength and block size increase, the transition is

age over small blocks of Ia_rge disorder, just as it averagegpadened and then the ordered nematic phase is destroyed. Tem-
over large blocks of small disorder. _ perature is in units of the bond strength

The results of this section show that random-bond disor-
der can change the nature of the isotropic-nematic transitioof the local director in different blocks. This could occur if
in liquid-crystalline elastomers, provided that the magnitudethe crosslinking process quenches heterogeneous local
andlength scale of the disorder are sufficiently large. If thosestresses into the polymer network.
conditions are satisfied, then the orientational order param- Simulation results for several values of the random-field
eterS(T) undergoes a continuous change from a low value irstrengthh at fixed block size 1X 12X 12 are presented in
the high-temperature isotropic limit to a large value in theFig. 5a). For a small random fielti=0.2, the system has a
low-temperature nematic limit. The lattice distortionT) first-order isotropic-nematic transition, which is fairly close
goes through a corresponding smooth evolution. Thus, thito the result for no disorder. For a slightly larger random field
type of disorder provides one mechanism to explain the exh=0.3, the magnitude of the first-order discontinuity and the
perimental results. width of the hysteresis region are both reduced. 0.4,
the first-order transition is much weaker, and the system is
close to the smooth crossover between the isotropic and
nematic phases seen in the previous two sections. However,

As an alternative to random bonds, quenched disordefor a larger random fielth=0.8, the behavior is quite differ-
might affect liquid-crystalline elastomers through randoment. Instead of broadening the isotropic-nematic transition,
fields coupling to the local directors. To simulate random-the random field simply destroys the long-range nematic or-
field effects, we let the field&; of Eq. (11) be quenched der in an athermal way. In that high-field limit, each local
random variables and let the bond strengthde fixed at 1. director is just aligned with its local random field, giving a
We suppose that the fields have a fixed magnitude and  slight residual order paramet&T) that is approximately
random orientation. As in the random-bond case, we supposadependent of temperature.
that the randomness occurs in blocks, as shown in Kig. 3 Figure %b) shows the simulation results for several values
The random orientation is uniform at every site within aof the block size at the fixed random-field strength0.4. As
block, and it has no correlations from block to block. Thein the random-bond case, varying the block size has the same
magnitudeh of the random field and the size of the blocks effect as varying the random-field strength. For small block
are thus two parameters for this model. Note that this modedize, the system has a first-order transition that is very close
represents an elastomer with different preferred orientationto the result for no disorder. This behavior shows that the

C. Random fields
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orientational order averages over small blocks of strong ranexperiments, but high random-field disorder destroys the
dom field. For larger block size, the phase transition gradunematic phase over all temperatures.
ally changes toward a smooth crossover between the isotro- Our random-field simulation results are surprising in com-
pic and nematic limits. Analogous simulations for0.8(not ~ parison with theoretical expectations for random-field sys-
shown demonstrate that increasing the block size takes théems. In classic work on quenched disorder, Imry and Ma
system from a strong first-order transition toward a limit in [24] showed that arbitrarily small random fields should de-
which orientational order is destroyed for all temperature. Stroy long-range order in discreteorder parametefsuch as
Overall, the simulations presented in this section showf ISing modelfor spatial dimension less than 2 and destroy
that random fields can have two distinct effects on thdong-range order in &ontinuousorder parameter for spatial

isotropic-nematic transition in liquid-crystalline elastomers.d'me.ns'On I.ess than 4. In our c:.;\se,'the hematic order param-
eter is continuous and the spatial dimension is 3. Hence, the

Low random-field disorder broadens the isotropic-nematiqmr -Ma arqument implies that random fields should destro
transition, but high random-field disorder destroys the nem- y g p y

atic phase in a temperature-independent way. The results fnemat|c order. The simulations of high random fields show

: ) ; . : is effect, but the simulations of lower random fields show a
low random-field disorder are consistent with experiments ofy 44 isotropic-nematic transition, which is a very different
liquid-crystalline elastomers, but the results for high random

‘effect.
field disorder show a very different type of behavior. One might ask whether this behavior results from an
Imry-Ma domain size that is large compared with the size of
the simulation cell. To answer that question, we can estimate
the Imry-Ma domain size. In the Imry-Ma argument, do-
In this paper, we have investigated three possible mechanains form with a characteristic sizesuch that the bound-
nisms to explain the broadening of the isotropic-nematicary energy equals the field energy. In our 3D system of con-
transition in liquid-crystalline elastomers. The first mecha-tinuous directors, the boundary energy is of ordér To
nism is a stress that couples to the strain and hence to tifStimate the field energy, recall that we are simulating blocks
nematic order. Our simulations show that a small stress re2f Sites with the same random field, as shown in Fig. 3. Let
duces the first-order discontinuity in the isotropic-nematic? P€ the linear size of a block. The field energy for a single
transition and a critical stress causes this discontinuity t(EIOCk is of Order_zb_'OCk(hi'ni) ~h 2 , and the number of
vanish. Beyond that point, the elastomer has a smooth cros810cks per domain is of orde(rglb)z.gAs a rg?zsult,ztgg g'gld
over between the isotropic and nematic limits as a functiorg€rgy for a domain is of ordelh®b?)(¢/b)**~hp™=€"=.
of temperature. Hence, a supercritical stress gives the sanT@'S argument implies that Increasing th? block SIz€ causes
general trend as the experiments. However, our previous p gﬁorﬁgdggnmf'iﬂrfo &%rggﬂig:rechg,r asvilsitrS]etﬁg f':a Itglzr?gpu'
per found evidence that the smooth isotropic-nematic tranSiines ;';m Im?y—Mg domain sizg ng%%/(hélbg) For the 9y
tion does not require a supercrm(':al Strgsg). In partlcul_ar, simulated valued=1,h=0.4, andb=12, this size is less than
a smooth transition is seen even in elastomers cross-linked lattice unit, much less than the system size. Thus, the be-
the isotropic phase, even under the minimum applied StreS3avior in Ol,,ll’ simulations does not arise from é large
required for the experiment, conditions in which a supercriti-|

. . mry-Ma domain size.
cal stress is unlikely to occur. We suggest that the new behavior in our simulations

An alternative possibility to explain the broadened transi-arises from the coupling between the local directors and glo-
tion is quenched disorder in the elastomer. One specifigg| elastic strain variable. The Imry-Ma prediction is based
mechanism to generate quenched disorder is chemical he§n an analysis of the energetics of local ordered domains.
erogeneity, which can be represented by random bonds inBhis analysis assumes a short-range interaction in the order
lattice model. Our simulations show that random-bond disorparameter. By contrast, in our model for liquid-crystalline
der can broaden the isotropic-nematic transition into alastomers, the local director at any lattice site interacts with
smooth crossover, if the magnitude and length scale of théhe global elastic strain, which in turn interacts with the local
disorder are large enough. This numerical result is consistentirector at every other lattice site. Hence, the elastic strain
with theoretical work on generic random-bond systems bymediates an effective long-range interaction between local
Imry and Wortis[21], which argued that weak random-bond directors on different sites. This changes the assumptions in
disorder should reduce the first-order discontinuity in a tranthe Imry-Ma theory and hence allows a broad isotropic-
sition and larger disorder should eliminate the discontinuitynematic transition over a range of random-field strength.
completely. It is also consistent with other simulation studies For a specific numerical test of this suggestion, we per-
of the isotropic-nematic transition in systems of small mol-form simulations of a simplified modekithout the global
ecules with quenched random impuriti¢22,23. Thus, elastic strain variable. The Hamiltonian for this model con-
random-bond disorder provides a plausible mechanism to esists only of the interaction of E@2) plus the random fields
plain experimental results on liquid-crystalline elastomers. acting on the local directors. In this case, the interaction is

Another type of quenched disorder is heterogeneous localurely short-range, so the Imry-Ma argument should apply.
stresses, which can be represented by random fields in ladeed, the simulations show that random fields simply de-
lattice model. In general, random fields have stronger effectstroy the nematic order and do not induce a broad isotropic-
on ordered phases and phase transitions than random bondematic transition. This confirms the concept that a broad
In our simulations, we find that low random-field disorder transition is a new effect arising from a strain-mediated long-
broadens the isotropic-nematic transition, consistent with theange interaction.

IV. DISCUSSION
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In a realistic system, the elastic strain-mediated interacThe model considers a local directors coupled to a global
tion is notinfinite-range, as in our model. However, elastic elastic distortion variable and allows both random-bond and
interactions do have a power-law form, and hence they carandom-field disorder. Through Monte Carlo simulations of
have long-range effects. In a recent renormalization-grouphis model, we find that a uniform elastomer has a mechani-
study, Xing and Radzihovskjl8] have assessed the effects cal critical point, that both random-bond disorder and low
of elastic interactions on liquid-crystalline elastomers withrandom-field disorder broaden the isotropic-nematic transi-
random fields. They find that elastic interactions cause th&on, and that high random-field disorder destroys the nem-
nematic order to be robust against the disordering effect oatic phase. The model therefore confirms that the width of
random fields. Through a power-law expansion about spatiahe isotropic-nematic transition can be controlled by hetero-
dimensionality 5, they estimate that nematic order can bgeneity in liquid-crystalline elastomers.
stable down to a critical dimension well below 3. This is
apparently the same stabilization that we see numerically. ACKNOWLEDGMENTS
Thus, our simulation shows the consequence of this stabili-
zation for the temperature-dependent isotropic-nematic tran- We would like to thank M. Warner and T. C. Lubensky for
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